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Wildlife must adapt to human presence to survive in the Anthropocene, so it
is critical to understand species responses to humans in different contexts.
We used camera trapping as alens to view mammal responses to changes in
human activity during the COVID-19 pandemic. Across 163 species sampled
in102 projects around the world, changes in the amount and timing of
animal activity varied widely. Under higher human activity, mammals were
less active in undeveloped areas but unexpectedly more active in developed
areas while exhibiting greater nocturnality. Carnivores were most sensitive,

showing the strongest decreases in activity and greatest increases in
nocturnality. Wildlife managers must consider how habituation and
uneven sensitivity across species may cause fundamental differences in
human-wildlife interactions along gradients of human influence.

With the global human population size now past 8 billion and the
associated human footprint covering much of the Earth’s surface’,
survival of wild animals in the Anthropocene requires that they adapt
to physical changes to the landscape and to increasing human pres-
ence. Animals often perceive humans as threats and subsequently
adjust behaviours toavoid peopleinspace or time’. Conversely, some
animals are attracted to people to obtain resource subsidies or protec-
tion from predators**. These contrasting responses to humans shape
the prospects for human-wildlife coexistence, with consequences
for the capacity of human-influenced ecosystems to support robust
animal populations and communities.

Variation in animal responses to human activity can be driven by
intrinsicfactorssuchasspecies’ecological andlife-historytraits (Table1)".
For instance, small-bodied generalist species may be more tolerant of
human presence, as they canbe less conspicuous thanlarger speciesand
more capable of shifting resource use within their broader niches than
are specialists®. Wide-ranging, large-bodied carnivores face consider-
ablerisk of mortality from humans’and so may exhibit more risk-averse
responses to human activity. Animal responses may also be heavily
influenced by the type of human activity (for example, hunting versus
hiking®) and by extrinsic factors such as landscape context. Animals may
bewarier of peoplein open or human-modified environments relative
to areas with abundant vegetation cover or minimal human landscape
modification’. Conversely, animals in heavily modified landscapes

could habituate to human presence and thus be less likely to respond to
changesin humanactivity. Our ability to resolve such hypotheses about
theinteractinginfluences of species traits and landscape characteristics
has been limited by the focus of previous studies on few species and
contexts, withindirect measures of humanactivity and weaker correla-
tive inferences. Ultimately, anticipating and managing impacts to wild
animalsrequires stronger inferences from experimental manipulations
of human activity and concurrent monitoring of people and animals
across arange of species and environmental contexts.

Government policies during the early months of the COVID-19
pandemic (henceforth, pandemic) resulted in widespread changes
to human activity that provided a quasi-experimental opportunity
to study short-term behavioural responses of wild animals'. Early
observations of animal responses to this ‘anthropause™ relied on
qualitative or opportunistic sightings prone to bias (for example,
contributed by volunteers™), or focused on small spatial scales and
few species, reporting a mix of positive and negative responses that
make it difficult to reach more general conclusions”. Furthermore,
measures of human activity have typically been coarse and indirect™,
yet changes to human activity during the pandemic appeared highly
variable at the fine scales that affect animal behaviour (Fig. 1). For
example, some natural areas experienced increases in humanvisitation
while others were closed to visitors® and the strength of government
restrictions changed over time'*. It is thus important for studies using
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Table 1| Predictor variables hypothesized to explain variation in species responses to higher human activity, with greater
reductions in amount of activity or increases in nocturnality predicted for more sensitive species (further details in

Supplementary Information)

Class Variable Prediction Range

Species trait Body mass Large-bodied species will be more sensitive Small (1-20kg; n=101); large
(20-4,600kg; n=62)

Species trait Trophic level Higher trophic levels will be more sensitive Carnivore (n=59), omnivore
(n=27), herbivore (n=77)

Species trait Diet breadth Specialists with narrower diet will be more sensitive 1-4 diet categories

Species trait Habitat breadth Specialists with narrower habitat preference will be more sensitive 1-9 habitat categories

Species trait Diel activity Diurnal species will be most sensitive, cathemeral species intermediate Diurnal (n=13), cathemeral

and nocturnal species least sensitive

(n=91), nocturnal (n=59)

Species trait Hunting status

Hunted species (within projects) will be more sensitive to increased human
activity than their non-hunted counterparts

Yes (n=486), no (n=491)
(total=977 project-species)

Species trait Relative brain size

Small-brained species will be more sensitive

0.006-5.3kg

Habitat structure Openness

habitats

Animals will be more sensitive in open habitat types relative to closed

Open (n=31), closed (n=71)

Land-use disturbance  Human modification index

modification

Animals will be more sensitive in landscapes with more human

0.005-0.834

Magnitude of human  Global stringency index

change stringent

Animals will show stronger responses where lockdowns were more

38.9-96.0 stringency units

Magnitude of human
change

Mean change in human

detections (at camera traps)  greater

Animals will show stronger responses where change in human activity

1-100-fold changes

For continuous variables we show the range (minimum-maximum); for categorical variables we show the sample size for each level, which sum to 163 species for species-level variables or 102
projects for project-level variables (unless otherwise stated). Body mass and trophic level were combined in a new variable ‘trophic group’.

the pandemicas anunplanned experiment to have localized informa-
tion on human activity that matches their animal data and to tackle
context-dependency by using robust, standardized methods across
several species and landscapes.

The widespread use of camera traps to survey terrestrial mam-
mals'® provides a unique opportunity to take advantage of the pan-
demicexperimentand improve our understanding of animal responses
to changes in human activity. Thousands of cameras are deployed
around the world”, providing standardized animal sampling while
simultaneously quantifying localhuman activity”*'®. We harnessed this
opportunity to examine relationships between detections of people
and mammals across gradientsin land use and habitat type—spanning
102 survey sites (projects) in 21 countries (predominantly in Europe
and North America) with 5,400 camera-trap locations sampling for
311,208 camera-days before and during the pandemic (Fig. 1; Methods).
Some sites experienced a decrease in human activity during the pan-
demic, consistent with the notion of an anthropause, while there was
anincrease or no change at others. We focused our analysis on those
sites withsome change in human activity (eitherincrease or decrease)
and standardized our comparisons to be between periods of relatively
lower to higher human activity (either across years or within 2020;
Fig.1;Methods) to mimic the general trend of increasing human pres-
ence in the Anthropocene. We examined site-level changes in animal
detection rates and nocturnality across populations of 163 mammal
species (body mass >1kg; range 1-65 populations per species; Sup-
plementary Table 1) as measures of the relative amount and timing of
animal activity (Methods). We then used meta-analytic mixed-effects
models to quantify the extent to which variation in animal responses
across sites was explained by species traits, landscape modification
and other site characteristics and the magnitude of change in human
activity (Table 1; Methods).

Results and discussion

Our camera-trap measures of human activity varied widely under
COVID-19 lockdowns (occurring between March 2020 and January
2021), from100-fold decreases to 10-fold increases within sites between
comparison periods (Fig. 1and Supplementary Fig.1). These changes

were not predicted by coarser measures of human activity based on
the stringency of lockdowns (Supplementary Fig. 1), highlighting the
complementary value of finer-scaled monitoring of human activity.

Changes in amount of animal activity

Animals did not show consistent, negative responses to greater human
activity; instead, responses were highly variable among species and
sites (Figs.2and 3). Across 1,065 estimated responses (one per species
per project, that is, population), changes in animal detection rates
(reflecting the intensity of habitat use; Methods) varied from 139-fold
increases to 36-fold decreases, with a near-zero mean change overall
(-0.04, 95% confidence interval (CI) = —0.11-0.03; Fig. 2b). Trophic
group (combining body mass and trophic level) was the strongest pre-
dictor of changes in animal activity in response to increasing human
use, with large herbivores showing the largestincreasesinactivity and
carnivores showing the strongest decreases (Fig. 2c, Supplementary
Table 2 and Supplementary Fig. 3). This is consistent with carnivore
avoidance of higher mortality risk from encounters with people” and
with increased herbivore activity due to either more frequent distur-
bance by people or attraction to human activity driven by reduced risk
of predation (human shield hypothesis?).

Animal activity in more developed areas (that is, higher human
modificationindex (HMI) measured at the site level; Table 1) generally
increased (+25%) with higher levels of human activity, while animals
in less-developed areas decreased their activity (—-6%) when human
activity was higher (Fig. 2¢; coefficient = 0.077;95% Cl = -0.001-0.156).
This contrast highlights an important interaction between human
modification of a landscape and human activity therein—between
human footprint and footfalls—which we posit could be the result of
two factors. First, local extirpations of sensitive species (species ‘filter-
ing"”) would result in only human-tolerant species persisting in devel-
oped areas—for example, sensitive wolverine (Gulo gulo) were absent
from sites with intermediate to high human modification. Second,
species found across the gradient, such as mule deer (Odocoileus
hemionus), could become habituated to benign human presence in
more developed landscapes and therefore be less fearful of human
activity thantheir conspecifics in less-developed areas®. Notably, this
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Fig.1| Camera-trap sampling of contrasts between periods of higher versus
lower human activity. a, Location of camera-trap projects included in the
analysis (n =102). b,c, Examples for two projects: Edmonton, Canada (b) and
Danum Valley, Malaysia (c) showing time series of human detections for the
two types of comparisons used to assess the effects of higher human activity on
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animals. b, Abetween-year comparison with increased human activity during the
COVID-19 pandemic (treatment, red shading) relative to the same time period the
year before (control, blue shading). ¢, A within-year comparison with decreased
humanactivity during the pandemic (control, blue shading) relative to the
prepandemic period (treatment, red shading).

relationship with landscape modification varied predictably across
trophic groups (Fig. 2d and Supplementary Table 3). Small and large
carnivores, small herbivores and small omnivores increased their
activity with higher human activity in developed areas (increasing
by an average of 54%), while the response was much weaker for large
herbivores andin fact opposite for large omnivores, which decreased
activity when human activity increased in more modified landscapes
(50% decrease; Fig. 2d). This negative response was common across
all of the frequently detected large omnivores—wild boar (Sus scrofa),
American black bear (Ursus americanus) and brown bear (Ursus
arctos)—and could be driven by their attraction to anthropogenic
food resources (for example garbage and fruit trees) that may be less
risky to access when human activity is reduced”.

Animal detections were also more likely to decline with higher
human activity in more open habitat types such as grasslands or
deserts, relative to closed habitats such as forests (Fig. 2¢; coeffi-
cient=-0.172; 95% Cl =-0.3428 to —0.0018). This is consistent with
predictions under the landscape of fear framework that suggest that
animal perceptions of risk are influenced by availability of cover®.
Contrary to our expectations, we did not find strong evidence that
the magnitude of change in human activity (measured by camera
traps or the stringency index; Table 1) affected animal responses
or that hunted populations changed their amount of activity more
than non-hunted ones (Supplementary Tables 2, 4 and 5). We also
did not find strong support for the hypothesis that species with rela-
tively larger brains—as an index of behavioural plasticity*—would
show more pronounced responses to changes in human activity
(Supplementary Table 5).

Changes in timing of animal activity

Whether or not animals change their intensity of use of an area, they
could shift their timing of activity to minimize overlap with increasing
human activity (Fig. 3a)**. We measured changes in animal nocturnality
(proportion of night time detections) across 499 populations (Meth-
ods) and found considerable variation in animal responses toincreasing
human activity (though generally less than for amount of activity): from
fivefold increases in nocturnality to sixfold decreases (mean change
in proportion of nocturnal detections = 0.008; 95% Cl =-0.02-0.04;
Fig. 3b). The strongest predictor of changes in nocturnality was the
degree of landscape modification (HMI): in more developed areas,
animals tended tobecome more nocturnal ashuman activity increased
(19.3% increase in nocturnality; Fig. 3c, coefficient = 0.047; 95%
Cl=0.026-0.069; Supplementary Table 6). This is consistent with
previous evidence of increasing wildlife nocturnality in the face of grow-
ing human impacts? and highlights the importance of the temporal
refuge provided by night time cover for human-wildlife coexistence
inincreasingly human-dominated environments®.

Paralleling our findings about changes in the amount of animal
activity, trophic group was also an important predictor of changes
in nocturnality, with large carnivores becoming notably more noc-
turnal than other groups (+5.3%; Fig. 3c and Supplementary Table 6).
Again, we found support for an interaction between human modi-
fication and trophic group: most groups had stronger increases
in nocturnality along the disturbance gradient as human activity
increased (mean +22.6%), whereas the increases in nocturnality
for large carnivores did not vary with land-use disturbance (Fig. 3d
and Supplementary Table 7). This finding could reflect greater
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Fig. 2| Changes in the amount of animal activity in response to increasing
human activity. a, Interpretation of effects. b, Estimated effect sizes (black
points) and variances (coloured lines) for all populations included in the
analysis (n =1,065 project-species combinations from 102 independent
projects; two example species highlighted) with the global mean (and 95%
quantiles) plotted in black to the right. ¢, Estimated model coefficients
(points) and 95% Cls (lines; n = 1,065 project-species combinations from 102
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independent projects) for additive factors (with complete data; Methods)
hypothesized to influence changes in the amount of animal activity when
human activity is higher, where: intercept is diurnal, large herbivore in
closed habitat type with a seasonal comparison and all other effects are
contrasts. d, Model predictions for the interaction between trophic group
and HML.

sensitivity of large carnivores to the increased risk of conflict asso-
ciated with more human presence®, such that they shift timing of
activity to minimize overlap regardless of landscape context. Other
groups increased night time activity only in landscapes with higher
risk of human encounters (that is, more modification), which may in
turn enable the increases in amount of activity observed for many of
these species (Fig. 2d).

Unlike for the amount of activity, changes in the timing of animal
activity were mediated by the hunting status of species in an area,
whereby hunted animals showed stronger increasesinnocturnal behav-
iour at higher levels of landscape modification (+26.6%) relative to their
non-hunted counterparts (+13.5%; Fig. 3e and Supplementary Table 8).
We did not find strong evidence that relative brain size was associated
with shifts in animal nocturnality, nor that the magnitude of changein
the amount of human activity explained variationin animal responses
(Fig.3cand Supplementary Tables 6 and 9). We did find an effect of our
comparison type such that, on average, comparisons between years
showed larger shifts in nocturnality than within-year comparisons
(Fig. 3c and Supplementary Table 6), underscoring the importance
of temporal matching to minimize influence of other factors such as
seasonal changes in activity patterns.

Implications for human-wildlife coexistence

Contrary to popular narratives of animals roaming more widely while
peopleshelteredin place duringearly stages of the COVID-19 pandemic,
our results reveal tremendous variation and complexity in animal
responses to dynamic changes in human activity. Using a unique syn-
thesis of simultaneous camera-trap sampling of people and hundreds of
mammal species around the world, combined with apowerful before-
after quasi-experimental design, we quantified how animals change
their behaviours under higher levels of human activity across gradients
of human footprint. As the human population continues to grow, the
persistence of wild animals will depend on their responses toincreasing
human presence inboth highly and moderately modified landscapes. It
may thus be encouraging that many animal populations did not show
dramatic changesin the amountor timing of their activity under condi-
tions of higher human activity. Indeed, mean changes across all popula-
tions assessed were close to zero, suggesting that there was no global
systematic shift in animal activity during the pandemic, consistent
with other recent observations of highly variable animal responses™?.
Nevertheless, we saw stronger responses to human activity for certain
species and contexts and these patterns can help us better understand
and mitigate negative impacts of people on wildlife communities.
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Fig.3| Changes in animal nocturnality in response to increasing human
activity. a, Interpretation of effects. b, Estimated effect sizes (black points) and
variances (coloured lines) for all populations included in the analysis (n = 499
project-species combinations from 100 independent projects; two example
species highlighted) with the global mean (with 95% quantiles) plotted in black
to theright. ¢, Estimated model coefficients (points) and 95% Cls (lines; n = 499
project-species combinations from 100 independent projects) for additive

factors (with complete data; Methods) hypothesized to influence changes in
animal nocturnality when human activity is higher, where: intercept is nocturnal,
large herbivore in closed habitat type with aseasonal comparison and all other
effects are contrasts. d, Model predictions for interaction between trophic group
and human modification index. e, Model predictions for interaction between
hunting and HML.

One striking pattern is that animal responses to human activity
varied with the degree of human landscape modification. Our results
imply that risk tolerance and associated behaviours vary between
wildlife in more- versus less-developed contexts. As human activity
increased, many species in more modified landscapes surprisingly had
higher overall activity, although this activity was more nocturnal, sug-
gesting that animals persisting in these developed environments may
beattracted toanthropogenic resource subsidies but still seek ways to
minimize encounters with people through partitioning time?. Wildlife
managers in such modified environments should anticipate some ani-
mal habituation and manage the timing of human activity to protect
night time refuges that promote human-wildlife coexistence—particu-
larly for hunted species that showed the strongest shifts toward noctur-
nality. Onthe other hand, regulating the amount of human activity may
be more important in less-developed landscapes where we detected
the greatest declinesin animal activity withincreasing human activity.
Such remote landscapes are often spatial refuges for sensitive species
that may be filtered out as human modification increases; yet these
areasfaceincreasing demands from popular pursuits, such as outdoor
recreation and nature-based tourism'®, and may also be more difficult
to protect fromillegal hunting, encroachment or resource extraction®.

The sensitivity of species to human footprint and footfalls varied
by trophic group and body size, as did the interplay of space and time
inbehavioural responses. Both large and small carnivore species were
among the more sensitive to changes in human activity, generally
reducing their activity levels and exhibiting more nocturnality with
higher humanactivity. This motivates a continued emphasis on carni-
vore behaviour and management as a key challenge for human-wildlife
coexistence, giventhe threatened status of many carnivores, the risk of
negative outcomes of human-carnivore encounters and the ecological
importance of carnivores as strongly interacting species”*°. Avoid-
ance of people by carnivores could be beneficial if it reduces human-
carnivore conflict®*but it could also lead to different types of conflict
ifitresultsinlower predationrates onherbivores near people, asseenin
overbrowsing by habituated deer*. Indeed, large herbivores showed the
strongestincreasesin activity with higher human activity in our study,
consistent with habituation and increased risk of conflict. Large omni-
vores, suchasbear and boar, were unique in both spatially and tempo-
rally avoiding higher human activity inmore developed environments,
underscoring that managementefforts to regulate humanactivity and
create spatial or temporal refuges may lead to outcomes that differ
by species and setting. Managers must pay particular attention to the
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prospect that such differential responses canalter speciesinteractions
and cause knock-on effects with broader consequences for ecosystem
functions and services®*,

Our study highlights the value of learning from unplanned ‘experi-
ments’ caused by rapid changes in human activity® and other extreme
events (for example, ref. 34). These insights are enabled by sampling
methods, such as camera trapping, that facilitate standardized, con-
tinuous monitoring of diverse animal assemblages and humans across
varied landscape contexts. While many studies of the anthropause
focused on wildlife observations by volunteers in more accessible
urban environments (for example, ref. 35), our results emphasize that
animal responses to changes in human activity differ between more-
andless-developed landscapes. This context-dependency should be a
focus of furtherresearch, including expanded assessment of contexts
and species under-represented in our sample, such as thosein tropical
regions subjected to different pressures during the pandemic*®. Many
geographic and taxonomic gaps in global biodiversity monitoring
remainand mustbe filled by cost-effective networks that gather reliable
evidence across several scales; standardized camera-trap programmes
and infrastructure are helping to do so**. As the cumulative effects
of the human enterprise put pressure on ecosystems worldwide*,
bending the curve of biodiversity loss will require context-specific
knowledge on ecological responses to human actions that can guide
locally appropriate and globally effective conservation solutions.

Methods
Data collection
Weissued a callinSeptember 2020 to camera-trap researchers around
the world for contributions of camera-trap data from before and
during the onset of the COVID-19 pandemic and associated restric-
tions on human activity'®". This initial call included a social media
post (Twitter, now X) and targeted emails to 143 researchers in
37 countries. Werequested datasets that adhered to global camera-trap
metadata standards (Wildlife Insights*) and received submissions from
146 projects. Submitted data were summarized using a standardized
script and evaluated according to the following key criteria: (1) most
or all camera-trap stations were deployed in the same area of inter-
est (hereafter site) before and during COVID-19-related restrictions;
(2) aminimum of seven unique camera-trap deploymentlocations (sta-
tions) were sampled; (3) aminimum sampling effort of at least 7 days
per camera period (see below); and (4) trends in human detections
were recorded from camera-trap data (that is, detections of humans)
or human activity for a given sampling area was available from other
sources (for example, lockdown dates and local knowledge).
Weonlyincluded detections of wild mammal species >1 kg (mean
species body massin kg obtained fromref. 40; we excluded domestic
animals, which represented only 6% of overall detections and were
associated with humans) and humans (excluding research person-
nel servicing cameras). Our full dataset for the next step of analy-
sis included 112 projects sampling across 5,653 cameras for 329,535
camera-days (see below for data included in specific models). The
meannumber of cameralocations per project was 42 (range 6-300) and
mean camera-days per project was 2,945 (range 348-27,986). Camera
locations were considered independent within projects, as no paired
cameras were included (see Supplementary Table 10 for more details
on camera deployments and spacing).

Experimental design

For each project, we first reviewed site-level trends in independent
detection events of humans (using astandardized 30 mininterval: that
is, a detection was considered independent if >30 min from previous
detection at the same camera station) to identify whether there were
changes in human activity associated with COVID-19 restrictions in
2020. We sought to identify two comparable sampling periods that
differed in human activity but were otherwise similar (for example,

in camera locations and sampling effort) and thus could be used as
a quasi-experimental comparison to assess wildlife responses to the
changein humanactivity. Weinitially anticipated that human activity
would be reduced during COVID-19 lockdowns (that is, the anthro-
pause) but observed a wide variety of patterns of human detections
across datasets, including decreases, increases and no change in human
detections between sampling before and during COVID-19 (Supple-
mentary Fig. 1). Since our primary interest was in evaluating wildlife
responses to changes in human activity and in general we anticipate
increases in human activity during the Anthropocene, we standard-
ized our treatments to represent increases in human activity. In other
words, we defined a ‘control’ period as one with lower human activity
and a‘treatment’ period as one with higher human activity, regardless
of which occurred before or during the COVID-19 pandemic (Fig. 1).

We identified start and end dates for each period on the basis of
clear changes in human detections (determined from visual inspection
of daily detections; Fig. 1). For some projects, dates corresponded to
known dates of local COVID-19 lockdowns or changes in study design
(for example, dates of camera placement or removal). We prioritized
comparison between years when datawere collected in similar periods
inyears before 2020 (n = 95 projects). If multiyear data were not avail-
able, we selected comparison periods before and after the onset of
lockdowns around March 2020 (with specific dates chosen according
to local lockdown conditions; n =17). If there were several potential
treatment periods, we prioritized periods on the basis of the follow-
ing ordered criteria: (1) the fewest seasonal or ecological confounds;
(2) the most similar study design; (3) the greatest sampling effort; and
(4) the most recent time period. Of the 95 projects for which we made
comparisons between 2020 and a previous year, we used 2019 for 88
projects, 2018 for 6 and 2017 for 1.

Incases where there was no noticeable difference in human detec-
tions between candidate periods, or there were insufficient human
detections from cameratraps, we used other data or local knowledge
of changes in human activity (for example, lockdown dates and visitor
use data) from co-authorsresponsible for the particular project. Of the
112 projectsincluded in our initial analyses, 15 used this expert opinion
to determine changes in human activity. After completing our initial
categorization of comparison periods, we shared details with all data
contributors for review and adjustment, if necessary, based on expert
knowledge of agivenstudy area. Contributors were asked whether our
delineation of sampling periods as being high versus low in human
activity corresponded with their knowledge of the study system. We
also asked them to consider whether other sources of environmental
variation (for example, fire, drought, seasonal or interannual variation)
orsampling design could confound the attribution of changes in wild-
life detections to changes in human activity. After this evaluation and
review, weretained 102 project datasets that had a detectable changein
human activity betweenatreatment and control period for subsequent
statistical modelling. These projects spanned 21 countries, mostly in
North America and Europe but with some representation from South
America, Africaand Southeast Asia (Fig.1and Supplementary Table 10).

Our paired treatment-control design makes several assumptions.
For instance, we assumed that either: (1) changes in human activity
occurred inthe same direction throughout the entire study area within
the treatment period; (2) the direction of the average effect was more
important thanvariationindirection across camerasites; (3) variation
in human activity within a study area was lower than differences in
human activity between the treatment (higher activity) and control
(lower activity) periods. By standardizing our treatment to be the
period of higher human activity, we also assumed that the temporal
direction of change did not affect animal responses.

Data analysis
We compared two response variables between treatment and control
periods to assess wildlife responses to changes in human activity: the
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amount of animal activity and the timing of animal activity (described
below). We used a two-stage approach in which we first estimated the
direction and magnitude of change in these responses between periods
for each speciesand then used ameta-analytical approach to evaluate
the degree to which a set of candidate predictor variables explained
variation in estimated responses. All data manipulation and analysis
were done using R statistical software (v.4.1.3; ref. 41).

Amount of animal activity. To evaluate changes in the amount of
animal activity, we quantified detection rates for each mammal species
(and humans) at each camerafor the treatment and control periods of
each project. Specifically, we calculated the number of independent
detections for a given species and camera station using a standard-
ized 30 min interval (that is, detection was considered independent
if >30 min from previous detection of the same species at the same
camerastation), while controlling for variation in sampling effort (log
of camera-daysincluded as an offset in models). We assumed that this
detection rate (sometimes termed relative abundance index'®) meas-
ured therelativeintensity of habitat use by aspecies atacamerastation,
which reflects both the local abundance of the species (number of
individualsinsampled area) and the movement patterns of individuals.

To quantify the magnitude of change in the amount of animal
activity, wefirst ransingle-species models to estimate changesin detec-
tion rates for species and humans between the comparison periods
foreach project. The response variable was the count of independent
detection events, modelled as negative binomial, with an offset for
active camera-days. Treatment was included as a fixed effect and a
random intercept was included for camera station where the same
camera locations were sampled in both periods (no random effect
was included if a project used different camera locations between
periods). Allmodels were implemented using the glmmTMB package**.
These models produced aregression coefficient (effect size) for each
project-species population (humans and animals) representing the
estimated magnitude of change in the amount of activity between
the control period and the treatment period (and its corresponding
sampling variance).

Timing of animal activity. To assess changes in timing of animal activ-
ity, we first classified each independent detection of a given species
within a given project as ‘day’ or ‘night’. We used the lutz package to
convert all local times to UTC*. We calculated the angle of the sun
at the time of the first image in each detection using the sunAngle
functioninthe oce package**, based on the UTC time and latitude and
longitude of the camera deployment location. Negative sun angles
corresponded to ‘night’ (between sunset and sunrise) and positive
sunangles to ‘day’ (between sunrise and sunset). Following ref. 24, we
calculated anindex of nocturnality, N, as the proportion ofindependent
camera-trap detections that occurred during the night (N = detections
during night/ (detections during night + detections during day)) for
all species which had ten or more detections in both the control and
treatment periods. We then calculated the log risk ratio, RR and its cor-
responding sampling variance (weighted by sample size) between the
treatment and control periods, pooled across all camera traps withina
given study using the escalc() function within the metafor package®.
This effect size compared the percentage of animal detections that
occurred at night with high human activity (V,) to night time animal
activity under low human activity (V,), with RR = In(N,/N))). A positive
RRindicated arelatively greater degree of nocturnality inresponse to
human activity, while a negative RR indicated reduced nocturnality.

Hypothesized explanatory variables. We identified and calculated a
set of variables that we hypothesized would affect species responses
to changes in human activity. These fell into four general classes:
(1) species traits, (2) habitat (that is, vegetation) structure, (3) anthro-
pogeniclandscape modification and (4) magnitude of human change

(Table 1). We did not include any covariates reflecting differences in
camera-trap sampling protocols between projects, as our estimates
of species responses were made within projects (that is, comparing
treatment versus control periods) and thus sampling methods were
internally consistent within projects (for example, camera placement
and settings).

Species traits. We hypothesized that species with the following traits
would be more sensitive to changes in human activity (that is, more
vulnerable or risk averse): larger body mass*®, higher trophic level*®,
narrower diet and habitat breadth, diurnal activity*® and smaller
relative brain size**. We extracted variables for each species from the
COMBINE database*’, the most comprehensive archive of several
mammal traits curated to date (representing 6,234 species). Given that
sometraitsin the database wereimputed, wereviewed the designations
for plausibility and cross-referenced the traits with other widely used
databases—specifically Elton Traits* and PanTHERIA*°—and made the
following corrections to the “activity cycle’ trait (diurnal, nocturnal
and cathemeral): diurnal to cathemeral—Mellivora capensis, Neofelis
nebulosa, Neofelis diardi; diurnal to nocturnal—Meles meles; nocturnal
to diurnal—Phacochoerus africanus; nocturnal to cathemeral—Ursus
americanus.To calculate relative brain size we divided log-transformed
brain mass by log-transformed body mass (asinref. 48). We combined
body mass and trophiclevelinto anew variable ‘trophic group’ (consist-
ing of small- or large-bodied categories for each of the three trophic
levels, Table 1). Dietary and habitat breadth are described in ref. 40.

We further hypothesized that animals in hunted populations
would be more sensitive to changes in human activity. We requested
thatall data contributors complete asurvey indicating whether agiven
species was hunted within their project survey area, from which we cre-
ated a binary factor representing hunting status for each population
(1=hunted; 0 = not hunted).

Habitat structure. Camera-trap surveys included in our analysis
covered an extensive range of biogeographic areas and habitat types.
We made the simplifying assumption that species responses to changes
in human activity would be most influenced by the degree of open-
ness of habitat (that s, vegetation structure) inasampling area. More
specifically, we hypothesized that areas with more open habitat types
would have higher visibility and thus less security cover for animals
and thus that animals in these open habitats would be more sensitive
toincreasesinhumanactivity than would animals in more closed habi-
tats withgreater security cover®’. We used the Copernicus Global Land
Cover dataset (100 mresolution®?) via Google Earth Engine to extract
land cover class at each camera station. We then used the percentage
canopy cover of the mode class across all camerasinagiven project to
defineifthe survey occurred in primarily closed (>70% canopy cover)
oropen habitat types (0-70% canopy cover).

Land cover disturbance. We posited that animal responses to changes
in human activity would differ according to the degree of anthro-
pogenic landscape modification (that is, human footprint**). More
specifically, we identified two hypotheses that could underlie vari-
ation in species responses as a function of land cover disturbance.
On the one hand, our ‘habituation hypothesis’ predicts that animals
in more disturbed landscapes may be less sensitive to changes in
human activity (relative to animals in undisturbed landscapes) and
thus show less of a negative response or even a positive response as
they have already behaviourally adapted to tolerate co-occurrence with
people”. Onthe other hand, our ‘plasticity hypothesis’ predicts that the
ability of animals to coexist with people in disturbed landscapes may
be dependent on plasticity in animal behaviour?, such that animalsin
these landscapes may show more pronounced and rapid responses to
changes in humanactivity (for example, avoidance of areas and times
with greater chance of encountering people).
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Weinitially characterized landscape disturbance using three vari-
ables accessed via Google Earth Engine: Gridded Population of the
World (1 kmresolution®*), road density (m km™, 8 kmresolution; Global
RoadsInventory Project®) and HMI (for 2016 at1 km resolution), which
represents a cumulative measure of the proportion of a landscape
modified by 13 anthropogenic stressors®’. Point values were extracted
for each camera station in each site, then the project-level medians
were used in analysis. As the median values of these three variables
were highly correlated across projects (Supplementary Fig. 2), we only
used HMIin our subsequent models.

Magnitude of human change. We expected that animal responses
would be more pronounced in areas that underwent greater changes
inhuman activity and we used two measures to assess the magnitude
of those changes. At a coarse scale, we used the COVID-19 stringency
index™, which characterizes the policies restricting human activities
within a given geographic region at a daily time scale and has been
widely used in studies of COVID-19 on human mobility and the environ-
ment (forexample, ref. 13). We used the finest-scale regional data avail-
able for each project, which was usually at the country level, with the
exception of three countries with province- or state-level data (Brazil,
Canada and the United States). When projects spanned several coun-
tries, provinces or states, we used the stringency index for the region
in which most cameras were located. For each region, we calculated
the median stringency for the treatment and control sampling periods.

Atafinerscale, we used the effect size for the modelled change in
camera-trap detection rates of humans across all camerasin a project
(as described above under ‘amount of animal activity’). Models with
this variable excluded 15 projects that either did not detect humans
with cameratraps or the number of humans detected on cameras was
not perceived by the data contributor to be an accurate reflection of
changein human use for the sampled area.

Meta-analysis models. To understand which factors mediated the
effect of increasing human use on animal activity, we ran mixed-effect
meta-analytic models using the rma.mv() function of the metafor pack-
age® onthe effect sizes and sampling variances of the two response vari-
ablesdescribed above (amount and timing of animal activity). Our unit of
observation for modelling was the estimated response for each project-
species combination (thatis, each animal population) and we included
random intercepts for project and for species nested within family, to
account for repeated observations within each of those higher-level
groups and for phylogenetic relatedness within families. All continuous
predictor variables (Table 1) were standardized to unit variance with a
mean of zero using the stdize functionin the MuMIn package™®. We tested
pairwise correlations among all predictor variables and found that none
were highly correlated (thatis, allbelow athreshold of Pearson | r| < 0.6;
Supplementary Fig. 2) and thus all were retained for modelling.

We performed our analysisin three steps for each of the two wild-
life response variables. First, we fit aglobal modelincluding all hypoth-
esized predictor variables for which we had complete data (excluding
hunting status, relative brain size and empirical magnitude of human
change, for whichwe had incomplete dataand thusincludedin analysis
of subsets of data, described below). Second, we used model selection
totest for plausible interactions and nonlinear effects. Third, we used
model selection on subsets of the full data to compare the global and
interactions models with candidate models adding three more predic-
tor variables withincomplete data.

Global model. As all of our predictor variables were independent,
we used a global model approach that included additive fixed effects
for all predictor variables (Table 1). We interpreted the Pvalue of each
effect contrast toindicate statistically significant support (at P< 0.05or
marginal supportat P < 0.10) for a consistent effect direction of agiven
predictor and we used the estimated effect size as a measure of effect

magnitude. We calculated the pseudo-R? to estimate the total variation
explained by our global models. We also calculated the P (ref. 57) of
each globalmodelto determine the amount of heterogeneity observed
betweenthe random effect levels; consistent variationin the response
terms between projects, families and species would result in higher
Pvalues compared to the null model with no fixed effects. To aid inter-
pretation, we present effect sizes in terms of the proportional change
(%) in model-predicted responses across lowest-to-highest values for
continuous predictors (for example, HMI) or between two categories
of interest (for example, trophic groups).

Model selection of plausible interactions and nonlinear terms.
To explore the possibility of context-specific effects of the predic-
tors of wildlife responses to changes in human activity, we assessed a
suite of ecologically plausible interaction and nonlinear (quadratic)
terms through adding them in turn to the global model and using
Akaike’s Information Criterion (corrected for small sample size, AICc)
to find the most parsimonious model. We assessed the following terms:
(1) ‘HMI*habitat_closure’, to evaluate the potential for habitat structure
to mediate responses to human landscape modification; (2) trophic_
group * HMI', to evaluate the potential for different trophic groups to
respond to human modification in different ways; (3) ‘trophic_group *
habitat_closure’, to evaluate the potential for different trophic groups
torespond to habitat structure in different ways; and (4) HMI?, to assess
nonlinear effects of wildlife responses to human modification. Models
including the candidate interaction or nonlinear terms were compared
totheglobal model without interaction terms using AICc (in the MuMIn
package®®) and were discussed above if they were within 2 AICc of the
best-supported model and there was no simpler, nested model with
more support.

Model selection on subsets of data. We had a small amount of missing
information in the data available for assessing the effects of popula-
tion hunting status, species relative brain size and empirical (that is,
camera-trap-based) magnitude of change in human activity (91.7%,
98.8% and 86.5% of project-species had datafor these variables, respec-
tively). Therefore, we ran the same global model used for the full dataset
on the subsetted data along with candidate models including each
of these predictor variables and all plausible interactions of interest
(as above). These additional candidate models were compared to the
global model (run on the same partial dataset) using AICc and were
discussed in the results if they resulted in a lower AICc value (that is,
had more support than the global model, which was a simpler nested
model).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The datausedinthis paper areavailable in Figshare, with the identifier:
https://doi.org/10.6084/m9.figshare.23506536.

Code availability

The code used to analyse the data and create the figures in this paper
are available in Figshare, with the identifier: https://figshare.com/
articles/software/Analysis_R_Code/23506512.
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Software and code

Policy information about availability of computer code

Data collection  No software was used to collect data

Data analysis R Statistical Software, version 4.1.3. Code for data analysis are available on FigShare (link provided in Code Availability statement in paper).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
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- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

All data and code have been made available on FigShare with the links provided in the Data Availability and Code Availability statements in the paper.
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Human research participants
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Reporting on sex and gender NA (our study did not involve human research participants)

Population characteristics
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Ethics oversight

NA

NA

NA

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Ecological, evolutionary & environmental sciences study design

All studies must disclose on

Study description

Research sample

Sampling strategy

Data collection

Timing and spatial scale

Data exclusions

Reproducibility

Randomization

Blinding

Did the study involve field

these points even when the disclosure is negative.

Comparison of amount and timing of animal activity between paired treatment (higher human activity) and control (lower human
activity) time periods using detections from 5400 camera traps for 163 species across 102 survey areas. Unit of comparison was the
population (species-project), with 1065 for amount of activity and 499 for timing of activity.

Sample of terrestrial mammals detected at motion-triggered camera traps across 102 survey areas around the world. Surveys were
identified opportunistically as those with active camera trap sampling before and during the COVID-19 lockdowns in 2020. Within
surveys, cameras were deployed randomly or systematically to detect medium- and large-bodied terrestrial mammals (> 1 kg),
including humans.

We included surveys for which: most or all camera trap stations were deployed in the same area of interest before and during
COVID-19-related restrictions; a minimum of 7 unique camera trap deployment locations were sampled; a minimum sampling effort
of at least 7 days per camera period; and trends in human detections were recorded from camera trap data or human activity was
available from other sources.

Mammals photographed by camera traps were identified from images by researchers from each project. The date and time of each
detection was recorded, as was the location of each camera trap.

The spatial scale includes the entire world as we considered camera trap surveys from anywhere that met our criteria (listed above
under sampling strategy). The timing of sampling varied by project, and across all projects spanned from 2017-2020, with most

sampling between 2019-2020.

We received data submissions from 146 projects, of which 112 met our sampling criteria (described above). We analyzed data from
102 projects, excluding 10 projects that did now show any change in human activity (i.e., no treatment effect).

This was not a controlled experiment but rather a quasi-experiment based on changes in human activity in response to COVID-19
policies. Our samples were therefore not reproducible.

Our comparisons of human and animal activity were between time periods within survey areas, thus controlling for variation
between survey areas.

Animals are detected by passive infrared cameras triggered by animal motion and body heat. There is no researcher bias in detecting
animals.
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Field work, collection and transport

Field conditions Our study covered 102 survey areas around the world, and compared animal detections between time periods. Field conditions thus
varied substantially

Location Our study covered 102 survey areas around the world.
Access & import/export  Camera trap sampling is non-invasive and does not involved any capture, handling or collection of animal specimens.

Disturbance Camera trap sampling is non-invasive and causes minimal disturbance to animals.
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Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods

n/a | Involved in the study n/a | Involved in the study

X[ ] Antibodies [ ] chip-seq

X |:| Eukaryotic cell lines |:| Flow cytometry

g |:| Palaeontology and archaeology g |:| MRI-based neuroimaging
|:| |Z Animals and other organisms

|Z |:| Clinical data

|Z |:| Dual use research of concern

Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in
Research

Laboratory animals The study did not involve laboratory animals.

Wild animals No animals were captured or handled. Animals were observed through photographic records obtained by passive infrared remotely
triggered cameras

Reporting on sex Both sexes for all species were recorded by photographs. There is no reason to expect any sex bias in sampling.
Field-collected samples  Study did not involve samples collected from the field (only photographs)

Ethics oversight No ethical approval is required for non-invasive photographic sampling by passive, remote infrared cameras

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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